翻訳と辞書
Words near each other
・ Lexington Market
・ Lexington Market (Baltimore Light Rail station)
・ Lexington Market (Baltimore Metro Subway station)
・ Lexington Medical Center
・ Lexington Memorial Hospital
・ Lexington Men O' War
・ Lexington metropolitan area
・ Lexington Micropolitan Statistical Area
・ Lexington Municipal Airport
・ Lexicogrammar
・ Lexicographic breadth-first search
・ Lexicographic code
・ Lexicographic error
・ Lexicographic information cost
・ Lexicographic order topology on the unit square
Lexicographic preferences
・ Lexicographic product
・ Lexicographic product of graphs
・ Lexicographical order
・ Lexicographically minimal string rotation
・ Lexicography
・ Lexicology
・ Lexicon
・ Lexicon (cardgame)
・ Lexicon (company)
・ Lexicon (disambiguation)
・ Lexicon (game)
・ Lexicon (program)
・ Lexicon (typeface)
・ Lexicon Avenue


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lexicographic preferences : ウィキペディア英語版
Lexicographic preferences
Lexicographic preferences or lexicographic orderings describe comparative preferences where an economic agent prefers any amount of one good (X) to any amount of another (Y). Specifically, if offered several bundles of goods, the agent will choose the bundle that offers the most X, no matter how much Y there is. Only when there is a tie between bundles with regard to the number of units of X will the agent start comparing the number of units of Y across bundles. Lexicographic preferences extend utility theory analogously to the way that nonstandard infinitesimals extend the real numbers. With lexicographic preferences, the utility of certain goods is infinitesimal in comparison to others.
For example, if for a given bundle (X;Y;Z) an agent orders his preferences according to the rule X>>Y>>Z, then the bundles would be ordered, from most to least preferred:
# 5;3;3
# 5;1;6
# 3;5;3
*Even though the first option contains fewer total goods than the second option, it is preferred because it has more Y. Note that the number of X's is the same, and so the agent is comparing Y's.
*Even though the third option has the same total goods as the first option, the first option is still preferred.
*Even though the third option has far more Y than the second option, the second option is still preferred because it has slightly more X.
A distinctive feature of such lexicographic preferences is that a multivariate real domain of an agent's preferences does not map into a real-valued range. That is, there is no real-valued representation of a utility function.〔Amartya K. Sen, 1970 (), ''Collective Choice and Social Welfare'', ch. 3, "Collective Rationality," pp. 34-35. (Description. )〕
In terms of real valued utility, one would say that the utility of Y and Z is infinitesimal compared with X, and the utility of Z is infinitesimal compared to Y. The model of real numbers is always logically ambiguous; one is allowed to adjoin infinitesimal quantities to make a nonstandard model. Standard models of the real numbers exclude infinitesimals, so lexicographic preferences are not precisely described by standard reals. But by assigning a utility to X which is much much larger than the utility of Y, which in turn is much much larger than the utility of Z, the infinitesimal order relation can be approximated arbitrarily closely, which means this is a problem of idealized limits only.
==Implications==

If all agents have the same lexicographic preferences, then general equilibrium cannot exist because agents won't sell to each other (as long as price of the less preferred is more than zero). But if the price of the less wanted is zero, then all agents want an infinite amount of the good. Equilibrium cannot be attained with standard prices. The utilities are infinitesimal, but the prices are not. Allowing infinitesimal prices resolves this.
Lexicographic preferences can still exist with general equilibrium. For example,
*Different people have different bundles of lexicographic preferences such that different individuals value items in different orders.
*Some, but not all people have lexicographic preferences.
*Lexicographic preferences extend only to a certain quantity of the good.
The nonstandard equilibrium prices for exchange can be determined for lexicographic order using standard equilibrium methods, except using nonstandard reals as the range of both utilities and prices. All the theorems regarding existence of prices and equilibria extend to the case of nonstandard utilities, since the nonstandard reals form a conservative extension, meaning that any theorem which is true for reals can be extended to the nonstandard reals and remains true.
Lexicographic preferences are the classical example of rational preferences that are not representable by a utility function over the standard reals. If there were such a function ''U'' then, e.g. for 2 goods, the intervals () would have a non-zero width and be disjoint for all ''x'', which is not possible for an uncountable set of x-values. If there are a finite number of goods and amounts can only be rational numbers, utility functions do exist, simply by taking 1/N to be the size of the infinitesimal, where N is sufficiently large, to approximate nonstandard numbers.
The relation is not continuous because for a decreasing convergent sequence x_n \rightarrow 0 we have (x_n,0)>(0,1), while the limit (0,0) is smaller than (0,1).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lexicographic preferences」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.